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1 By completing the square, or otherwise, find the exact value of Ô 6

2

1

x2 − 6x + 12
dx. [4]

2 Use the standard Maclaurin series expansions given in the List of Formulae MF20 to show that

1
2

ln

@
1 + x

1 − x

A � tanh−1 x for −1 < x < 1. �4�

3 The curve C has equation y = x + 1

x2 − 4
.

(i) Show that the gradient of C is always negative. [3]

(ii) Sketch C, showing all significant features. [6]

4 (i) Find a vector which is perpendicular to both of the vectors

d
1
= i + 2j + 4k and d

2
= 9i − 3j + k. �2�

(ii) Determine the shortest distance between the skew lines with equations

r = 2i + 4j + 3k + ,�i + 2j + 4k� and r = i + j + 10k + -�9i − 3j + k�. �5�

5 Let Ï = cos 1 + i sin 1.

(i) Prove the result Ïn − 1Ïn = 2i sin n1. [2]

(ii) Use this result to express sin51 in the form A sin 51 + B sin 31 + C sin 1, for constants A, B and

C to be determined. [5]

6 The curve P has polar equation r = 1

1 − sin 1 for 0 ≤ 1 < 20, 1 ≠ 1
2
0.

(i) Determine, in the form y = f�x�, the cartesian equation of P. [3]

(ii) Sketch P. [2]

(iii) Evaluate Ô 20

0
1

�1 − sin 1�2
d1. [3]

7 (i) Express x3 + y3 in terms of �x + y� and xy. [2]

(ii) The equation t2 − 3t + 8
9
= 0 has roots ! and ".

(a) Determine the value of !3 + "3. [2]

(b) Hence express 19 as the sum of the cubes of two positive rational numbers. [3]
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8 Let G = �g
1
, g

2
, g

3
, à, gn� be a finite abelian group of order n under a multiplicative binary operation,

where g
1
= e is the identity of G.

(i) Let x ∈ G. Justify the following statements:

(a) xgi = xgj ­ gi = gj; [2]

(b) �xg
1
, xg

2
, xg

3
, à, xgn� = G. [1]

(ii) By considering the product of all G’s elements, and using the result of part (i)(b), prove that

xn = e for each x ∈ G. [3]

(iii) Explain why

(a) this does not imply that all elements of G have order n, [1]

(b) this argument cannot be used to justify the same result for non-abelian groups. [1]

9 The plane transformation T is the composition (in this order) of

³ a reflection in the line y = x tan 1
8
0; followed by

³ a shear parallel to the y-axis, mapping �1, 0� to �1, 2�; followed by

³ a clockwise rotation through 1
4
0 radians about the origin; followed by

³ a shear parallel to the x-axis, mapping �0, 1� to �−2, 1�.
Determine the matrix M which represents T , and hence give a full geometrical description of T as a

single plane transformation. [8]

10 (a) Given that y = kx cos x is a particular integral for the differential equation

d2y

dx2
+ y = 4 sin x,

determine the value of k and find the general solution of this differential equation. [8]

(b) The variables x and y satisfy the differential equation

d2y

dx2
+ y2 dy

dx
+ xy = 5x − 19.

(i) Given that y = 2 and
dy

dx
= 1 when x = 1, find the value of

d3y

dx3
when x = 1. [6]

(ii) Deduce the Taylor series expansion for y in ascending powers of �x − 1�, up to and including

the term in �x − 1�3, and use this series to find an approximation correct to 3 decimal places

for the value of y when x = 1.1. [4]

11 (i) Determine p and q given that �p + iq�2 = 63 − 16i and that p and q are real. [4]

(ii) Let f�Ï� = Ï3 − AÏ2 + BÏ − C for complex numbers A, B and C.

(a) Given that the cubic equation f�Ï� = 0 has roots ! = −7i, " = 3i and ' = 4, determine each

of A, B and C. [4]

(b) Find the roots of the equation f ′�Ï� = 0. [5]
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12 Given y = xe2x,

(i) find the first four derivatives of y with respect to x, [4]

(ii) conjecture an expression for
dny

dxn in the form �ax + b�e2x, where a and b are functions of n, [2]

(iii) prove by induction that your result holds for all positive integers n. [5]

13 (i) Use the definitions tanh 1 = e1 − e−1
e1 + e−1 and sech 1 = 2

e1 + e−1 to prove the results

(a) tanh21 � 1 − sech21,

(b)
d

d1 �tanh 1� = sech21. [4]

(ii) Let In = Ó !
0

tanh2n1 d1 for n ≥ 0, where ! > 0.

(a) Show that In−1
− In = tanh2n−1!

2n − 1
for n ≥ 1. [4]

Given that ! = 1
2

ln 3,

(b) evaluate I
0
, [1]

(c) use the method of differences to show that In = 1
2

ln 3 −
nÐ

r=1

�
1
2

�2r−1

2r − 1
and deduce the sum of

the infinite series

∞Ð
r=0

1

�2r + 1�4r . [7]
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